
Before there was light

Freddy Rabouw

Excited state dynamics
in luminescent (nano)materials

Figure . • Overview of the
Estimates obtained by metho
those obtained by method  
connect symbols that belong
ically <1% (see 

Radiative lifetime A 
0 40 80

Ra
d

ia
ti

v

0

40
τ r,B

 = τ r,A
/2

12

O
cc

ur
re

n

1

10

10

200

APD1–APD2 delay time (ns

0–200

ton emission using time gating. T1.50 eV
3H4 3F

(k
W

 m
–2

 e
V

–1
)

1.0

0.5

O4:Tb3+,Yb3+. (a) In the 
odel explicitly considers 

bor acceptors. The accep-
mbers A(m1) indicate the 

x = 50%. (b) The distri-

1284

Delay time (ms)

Tb
3+

%
)

Sol

80

74

92

86

1.3

9

1

( . )

Eq. .

ρ(γ) = γα–2 with 

, 

n.  describes power-law decay Id = t–α 
rection to keep the function well-behaved 

X is the exciton decay rate) can be used as 
rge separation and recovery of the exciton 

rates

28 nov 2016
Provinciaal Utrechts Genootschap van Kunsten en Wetenschappen

frabouw@gmail.com



Lichtgevende nanokristallen
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ABSTRACT: The efficiency and stability of emission from semiconductor
nanocrystal quantum dots (QDs) is negatively affected by “blinking” on the single-
nanocrystal level, that is, random alternation of bright and dark periods. The time
scales of these fluctuations can be as long as many seconds, orders of magnitude
longer than typical lifetimes of exciton states in QDs. In this work, we investigate
photoluminescence from QDs delayed over microseconds to milliseconds. Our
results prove the existence of long-lived charge-separated states in QDs. We study the
properties of delayed emission as a direct way to learn about charge carrier separation
and recovery of the exciton state. A new microscopic model is developed to connect
delayed emission to exciton recombination and blinking from which we conclude that
bright periods in blinking are in fact not characterized by uninterrupted optical cycling as often assumed.
KEYWORDS: Nanocrystal, colloidal quantum dot, charge carrier trapping, blinking, excited state dynamics

Blinking, or intermittency, in the photoluminescence (PL)of individual semiconductor nanocrystal quantum dots(QDs) is a fascinating phenomenon that is still not fullyunderstood.1,2 Soon after the first observation of blinking inindividual QDs3 the idea was proposed that dark periods weredue to temporary charging.4 Charging would render the QDdark because subsequent excitations would decay not by theemission of a photon but by Auger recombination, that is,transfer of the recombination energy to the excess chargecarrier. This basic idea has been used to develop detailedmodels for blinking.5−7 To explain the characteristic power-lawstatistics of the durations of bright and dark periods, thesemodels assume that the rates of charging (by charge carrierejection and trapping) and discharging (by recombination orrelease of the trapped charge) of the QD fluctuate in time.Recent experimental results have put into question the idea thatAuger quenching alone can explain the dark periods.8−10 Theysupport alternative blinking models, where the dark states aredue to charge carrier localization and nonradiative recombina-tion on structural defects in the QD.11−13 It has also beenproposed that blinking can be due to a combination of Augerdecay and nonradiative recombination at trap sites.14,15 One ofthe reasons that there is still not one unifying physical modelfor blinking is that models are based on rather indirectexperimental data, namely the statistics of bright and darkdurations.
In this work, we examine the PL dynamics of core−shellCdSe/CdS/CdZnS/ZnS QDs over 10 orders of magnitude intime. There is exciton recombination on the nanosecond time

scale and blinking on the second time scale. We focus inparticular on “delayed emission” on time scales from micro-seconds to milliseconds.16−18 This component in the PL decaydynamics of QDs is often overlooked because, although itsintegrated intensity can be higher than 10%, the amplitude ismuch less than a percent of the exciton emission. We examinethe properties of delayed emission, concluding that it is due tocharge separation, storage, and eventual recovery of the lowestexciton state. Interestingly, the decay of delayed emissionfollows a power law, very similar to the statistics of bright anddark durations in blinking. A unifying microscopic model ispresented to account for both delayed emission and blinking.Emission Dynamics in Core−Shell Quantum Dots. TheQDs investigated have a CdSe/CdS/CdZnS/ZnS core−shellstructure with a 3.4 nm diameter CdSe core, and emit around630 nm (Figure 1a−d). Single-QD spectroscopy illustrates themany different dynamical processes that can occur in a QD.The emission intensity trace (Figure 1e) of a single core−shellQD over a period of 5 min of continued excitation exhibitsblinking, that is, on time scales of up to seconds the QDswitches randomly between a state of bright emission (blueshaded area) and states of intermediate brightness (green) ornear complete darkness (red). The probability distributions forthe duration of bright (ON; blue) and dark (OFF; red) periods(Figure. 1f), obtained with a threshold analysis,5 show that the
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ABSTRACT: The efficiency and stability of emission from semiconductor
nanocrystal quantum dots (QDs) is negatively affected by “blinking” on the single-
nanocrystal level, that is, random alternation of bright and dark periods. The time
scales of these fluctuations can be as long as many seconds, orders of magnitude
longer than typical lifetimes of exciton states in QDs. In this work, we investigate
photoluminescence from QDs delayed over microseconds to milliseconds. Our
results prove the existence of long-lived charge-separated states in QDs. We study the
properties of delayed emission as a direct way to learn about charge carrier separation
and recovery of the exciton state. A new microscopic model is developed to connect
delayed emission to exciton recombination and blinking from which we conclude that
bright periods in blinking are in fact not characterized by uninterrupted optical cycling as often assumed.
KEYWORDS: Nanocrystal, colloidal quantum dot, charge carrier trapping, blinking, excited state dynamics

Blinking, or intermittency, in the photoluminescence (PL)of individual semiconductor nanocrystal quantum dots(QDs) is a fascinating phenomenon that is still not fullyunderstood.1,2 Soon after the first observation of blinking inindividual QDs3 the idea was proposed that dark periods weredue to temporary charging.4 Charging would render the QDdark because subsequent excitations would decay not by theemission of a photon but by Auger recombination, that is,transfer of the recombination energy to the excess chargecarrier. This basic idea has been used to develop detailedmodels for blinking.5−7 To explain the characteristic power-lawstatistics of the durations of bright and dark periods, thesemodels assume that the rates of charging (by charge carrierejection and trapping) and discharging (by recombination orrelease of the trapped charge) of the QD fluctuate in time.Recent experimental results have put into question the idea thatAuger quenching alone can explain the dark periods.8−10 Theysupport alternative blinking models, where the dark states aredue to charge carrier localization and nonradiative recombina-tion on structural defects in the QD.11−13 It has also beenproposed that blinking can be due to a combination of Augerdecay and nonradiative recombination at trap sites.14,15 One ofthe reasons that there is still not one unifying physical modelfor blinking is that models are based on rather indirectexperimental data, namely the statistics of bright and darkdurations.
In this work, we examine the PL dynamics of core−shellCdSe/CdS/CdZnS/ZnS QDs over 10 orders of magnitude intime. There is exciton recombination on the nanosecond time

scale and blinking on the second time scale. We focus inparticular on “delayed emission” on time scales from micro-seconds to milliseconds.16−18 This component in the PL decaydynamics of QDs is often overlooked because, although itsintegrated intensity can be higher than 10%, the amplitude ismuch less than a percent of the exciton emission. We examinethe properties of delayed emission, concluding that it is due tocharge separation, storage, and eventual recovery of the lowestexciton state. Interestingly, the decay of delayed emissionfollows a power law, very similar to the statistics of bright anddark durations in blinking. A unifying microscopic model ispresented to account for both delayed emission and blinking.Emission Dynamics in Core−Shell Quantum Dots. TheQDs investigated have a CdSe/CdS/CdZnS/ZnS core−shellstructure with a 3.4 nm diameter CdSe core, and emit around630 nm (Figure 1a−d). Single-QD spectroscopy illustrates themany different dynamical processes that can occur in a QD.The emission intensity trace (Figure 1e) of a single core−shellQD over a period of 5 min of continued excitation exhibitsblinking, that is, on time scales of up to seconds the QDswitches randomly between a state of bright emission (blueshaded area) and states of intermediate brightness (green) ornear complete darkness (red). The probability distributions forthe duration of bright (ON; blue) and dark (OFF; red) periods(Figure. 1f), obtained with a threshold analysis,5 show that the
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